THE BRITISH LIBRARY

Science blog

Discover Science at the British Library

Introduction

We are the British Library Science Team; we provide access to world-leading scientific information resources, manage UK DataCite and run science events and exhibitions. This blog highlights a variety of the activities we are involved with. Follow us on Twitter: @ScienceBL. Read more

20 June 2017

British Library Digital Resources Discovery Sessions: Web of Science (WOS)

When: 10.00 – 12.00 or 13.00 – 15.00, Friday 23 June

Where: Social Science Seminar Room, Floor 1

Readers and staff are invited to attend one of two training sessions

being run by Thomson Reuters on their Web of Science e-resource.

These sessions will cover the following areas:

  • WOS Core for accelerating research discovery using the Citation Network and identifying impactful research
  • WOS All Databases for discovering the most relevant research and discovery beyond journal literature (patents for example)
  • Incites JCR+ ESI to identify top journals and identify the producers of the most impactful research and follow key trends in science.

Booking your place

To book your place please email ReferenceServicesTraining@bl.uk. Alternatively you are very welcome turn up on the day if there are spaces available and can register as a reader.

Applying for a readers pass: https://www.bl.uk/help/how-to-get-a-reader-pass

Web of Science

 

08 June 2017

Untangling academic publishing

Untangling
Untangling Academic Publishing logo. Creator uncredited, published under CC-BY

On the 25th of May we attended the launch of the report Untangling Academic Publishing by Aileen Fyfe and others (https://zenodo.org/record/546100). The report describes the history of scholarly publishing from the nineteenth century to the modern era of open access, “crises” in affordability of journals and books, and controversy over commercial publishers’ profits and competing business models.

The report discusses the post-WWII evolution of scholarly publishing from an original model where learned societies saw dissemination of research results as simply a part of their essential activity, with no expectations of profit and many copies of journals distributed free to public, academic and scholarly subscription libraries. After WWII an alliance became formed with profit-seeking scholarly publishers, under the pressure of the increasing quantity of publically-funded academic research and increasingly large numbers of universities and professional researchers in the developed world, and a growing proliferation of subdisciplines. Commercial publishers turned scholarly publication into a profitable business by setting up journals for subdisciplines without their own journals or learned societies, selling to institutions, and internationalising the market.

It was during this time that the current system of peer review was developed, and publication metrics became increasingly used to assess the prestige of individual academics and reward them with career progression and funding.

However, since the 1980s this period of close association between the interests of scholars and commercial publishers has ended, due to further expansion of the research base, reduced library budgets due to inflation and cuts in funding, and in the UK specifically issues related to exchange rates. University libraries have struggled to afford journal subscriptions and monograph purchases, leading to a vicious circle of declining sales and increasing costs. Increasingly scholars at all but the wealthiest institutions have found themselves unable to legally obtain material that they need to read, and resentment of the profit margins made by the “big four” commercial scholarly publishers in particular has developed.

Hopes that digital publication would allow cost-cutting have failed to materialise, with publishers arguing that the actual costs of distributing and printing hard copy publications are relatively small compared to editorial costs, and that providing online access mechanisms with the robustness and additional features that users want is not as cheap as some initial enthusiasts assumed. Open access, which covers a variety of business models not based on charging for access at the point of use, has been promoted for almost twenty years, but has failed to replace subscription publishing or, to a great extent, to challenge the market dominance of major commercial publishers, with much open access publishing based on the “gold” business model funded by article processing charges paid by authors or research funders, often offered by commercial publishers as an alternative. Hence universities often find themselves faced with paying both subscriptions and article processing charges instead of just subscriptions, and mechanisms offered by publishers to offset one against the other have been criticised as lacking transparency.

At the event, there were presentations by Dr. Fyfe, her co-author Stephen Curry (whose views can be found here), and David Sweeney, Executive Chair Designate of Research England. Mr. Sweeney welcomed the report for describing the situation without demonising any parties, and pointed out that publishers are adding value and innovating. He suggested that a major current issue is that academics who choose how to publish their work have no real connection to the way that it is paid for – either by their institutional libraries paying subscriptions or by funders paying APC’s – and hence are often not aware of this as an issue. It was pointed out in discussion after the event that the conversation about publishing models is still almost completely among librarians and publishers, with few authors involved unless they are very interested in the subject – the report is aimed partly at raising awareness of the issues among authors.

The general argument of the report is that it is time to look again at whether learned societies should be taking more of a role in research dissemination and maybe financially supporting it, with particular criticism of those learned societies who contract out production of their publications to commercial publishers and do not pay attention to those publishers’ policies and behaviour. Although there is no direct allusion, it is interesting that soon after the report’s launch, this post was published on Scholarly Kitchen, discussing the concept of society-funded publication and putting forward the name of “diamond open access” for it.

18 May 2017

Local heroes: Sir Henry Bessemer - Islington and St Pancras inventor

Bessemer spy
Sir Henry Bessemer, caricature by "Spy" (Leslie Ward)

On Tuesday evening Philip attended an event at City, University of London, for the unveiling of a blue plaque to the inventor and entrepreneur Sir Henry Bessemer. Bessemer lived for some time in a house at Northampton Square in Islington, in a block that was demolished after World War II for the construction of the university’s current main entrance building. When the main entrance was reconstructed recently, archaeological investigation confirmed that Bessemer’s home had been directly on its site. After the plaque unveiling, Dr. Susan Mossman from the Science Museum delivered a lecture on Bessemer’s life, from which much of the information in this post comes.

Bessemer is best known for his revolutionary process for steel manufacture, by blowing air through molten pig iron in an egg-shaped converter, to oxidise away most of the carbon in the pig iron. This left steel with the correct proportion of carbon to make it a useful metal. The process was covered by several British patents in 1855-6, but especially GB2321/1855 and GB2768/1855. These patents are not online, but you can see digital copies of them if you come to our reading rooms.

Bessemer preferred to licence his patent rather than build an ironworks himself, but many early licensees failed, and the process was considered a flop until he constructed an ironworks in Baxter Road in Saint Pancras, close to where the British Library is now, and began selling steel at far lower prices than anyone else could manage. It turned out that the process as Bessemer first conceived it was not suitable for iron containing high levels of phosphorus impurities, which was true for metal from ore mined in Northern England. One answer was to oxidise away the contaminants, which also destroyed the carbon already in the pig iron, and then add new carbon and manganese. This process was developed by Robert Forester Mushet, whose business failed but whose process Bessemer took over once Mushet’s patent expired. Bessemer was finally, reportedly shamed by Mushet’s daughter, persuaded to give Mushet a pension. The second answer was the Gilchrist-Thomas process, which lined the converter with alkaline stone, causing the acidic phosphorus compounds in the iron to form compounds that precipitated out of the steel and into the slag. With these further refinements Bessemer’s process became licenced worldwide, making Bessemer hugely rich, and did not become completely obsolete until the late twentieth century.

Bessemer Kelham
Bessemer Converter at Kelham Island Museum, Sheffield

Bessemer had already come up with many other inventions before his steel process, and would continue to do so afterwards. The most lucrative was his first real success, before steel, a method for making bronze powder for metallic paints on an industrial scale, hugely reducing the cost of a product which had previously been made by hand-grinding by craftworkers in Germany. Bessemer kept the process secret for decades, by ensuring that the machines were kept in four sealed rooms with strictly limited access, and that few people other than himself knew more than one of the four stages of the process. This helped him keep a monopoly much longer than the fourteen years he would have had if he’d patented the process. Bessemer was a shrewd businessman who would only continue working in a field as long as it made money. Once competitors had caught up with him he would move on to something else.

Another of Bessemer’s claims to fame was his early investment in “Parkesine”, the first commercialised artificial plastic, a form of celluloid. The business was a failure due to initial low quality, but remains historically important. At the time of his death, Bessemer was having what would have been the world’s second largest telescope constructed at his estate in Denmark Hill, but it was abandoned when he passed away.

Bessemer tomb
Bessemer's tombstone in West Norwood Cemetery (photograph by Robert Mason, CC0 licence)

Bessemer remains an inspiring figure for modern British inventors, but the story of his steel process also demonstrates some important lessons that dispel some of the romantic ideas of the inventor. Firstly, always be open to taking on the ideas of others instead of believing your own ideas to be perfect and unimprovable. Second, you may well have to start your own business instead of assuming that other people will be falling over themselves to licence your idea. Third, always think about whether an invention will make money, as well as its abstract beauty. And fourth, it helps to have plenty of money to invest before you start!

Further reading:

Patents by Henry Bessemer, in the Business & IP Reading Room at St Pancras.

An earlier blog post by Dr. Mossman on Bessemer’s life.

Bessemer, H and Bessemer, H Jr. Sir Henry Bessemer, FRS: an autobiography. London: Engineering, 1905. Available for order to our Reading Rooms at 10825.k.7 or Wq3/9544.

Bodsworth, C (Ed.). Sir Henry Bessemer: father of the steel industry. London: Institute of Materials, 1998. Available for order to our Reading Rooms at YK.1998.b.6654 or 2247.795000 690.