THE BRITISH LIBRARY

Science blog

Discover Science at the British Library

Introduction

We are the British Library Science Team; we provide access to world-leading scientific information resources, manage UK DataCite and run science events and exhibitions. This blog highlights a variety of the activities we are involved with. Follow us on Twitter: @ScienceBL. Read more

13 January 2017

Making hydrogen from wax

Philip recently attended an event for other Oxford University chemistry alumni, and one of the speakers drew attention to a recent publication from, among others, Oxford chemists, regarding the production of hydrogen from paraffin waxes by microwave degradation using a ruthenium catalyst.

Hydrogen has often been suggested as an environmentally-friendly replacement energy source for fossil fuels in transport vehicles and other applications requiring high energy density. (Note that hydrogen is not a “fuel”, as it must be made using energy from other sources, which can be environmentally-friendly or not.) However, there are significant problems with this, notably involving the safe storage of a highly-inflammable and explosive gas which is much lighter than air.

Hydrogen wax cycle
Figure 5 from original article showing chemical cycle and outputs

This publication suggests that wax could be carried on vehicles and used to create hydrogen gas in situ, the waste carbon being used to make more wax via syngas production and the Fischer-Tropsch process, where carbon monoxide and hydrogen is converted into hydrocarbons as a potential source of petro-chemicals that does not involve releasing fossil carbon into the atmosphere. While this publication is still a long way from a working industrial-scale process, it offers a very hopeful potential avenue for less-polluting technology.

Source: Gonzalez-Cortes, S et al. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition, Scientific Reports, 2016 6, 35315. Available online at http://www.nature.com/articles/srep35315

Further reading:
Ball, M et al (Eds.). Compendium of hydrogen energy: volume 4, Hydrogen use, safety and the hydrogen economy, Oxford: Woodhead Publishing, 2015. Available online in the British Library Reading Rooms.

19 December 2016

The first paper on carbon dioxide and global warming

Before 2016 ends, there’s one anniversary we previously didn’t get around to marking, the publication in 1896 of the first articles suggesting that carbon dioxide concentrations in the atmosphere might affect Earth’s climate via the greenhouse effect, by the Swedish chemist and physicist Svante Arrhenius. This phenomenon is almost universally accepted as a hazard to the future of human civilisation by climate scientists, although still denied by certain political figures.

Arrhenius2
Svante Arrhenius in 1910

Arrhenius (1859-1927) was one of the main early figures of physical chemistry, the branch of chemistry that uses physics to explain and predict the behaviour of chemical reactions, mixtures of matter and volumes of pure substances. He won the Nobel Prize for Chemistry in 1903, for coming up with the idea that many substances, such as salt, exist as charged ions when they dissolve in water, explaining why solutions conduct electricity. His other important achievements in chemistry include work on the rates of chemical reactions and developing the first clear definition of acids and bases.

Later in his career, he became interested in the discipline then known as “cosmic physics”, which sought to explain the current nature and past history of the Earth and other planets of the solar system. The greenhouse effect paper developed out of his attempts to develop an explanation for ice ages on Earth, which he suggested were caused by changes in the CO2 level of the atmosphere. (This remains one of several competing hypotheses today, although there is argument about whether changes in atmosphere composition were a cause, an effect, or part of a feedback loop.)

He first published his ideas in 1896, in German in the Swedish journal Behang till Kongliga Vetenskaps-Akademiens Handlingar and in an abridged English version in The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. He subsequently expanded on his theory for a mass audience in his popular science work Världarnas utveckling, published in English as Worlds in the Making.

According to Arrhenius, he spent a full year in tedious manual calculations for the paper, in various stages. Firstly, he sought to derive figures for the heat-absorption capacity of water vapour and carbon dioxide from detailed observations on the intensity of moonlight at Earth’s surface carried out by Samuel P Langley in 1885-7. He then calculated mean actual temperatures and humidities at different locations around the world, and then the calculated effects on temperatures in different parts of the world of carbon dioxide levels at 67%, 150%, 200%, 250%, and 300% of the actual one at the time he wrote. He calculated that doubling the carbon dioxide level in the atmosphere would raise the temperature in general by 4°C.

In the paper he did not discuss the effect of fossil fuel burning on carbon dioxide emissions. However, he did in Worlds in the Making. On pp.53-63, he discussed the role in carbon dioxide emissions of human activity and volcanism, and declared the chief means of long-term removal of carbon dioxide as formation of carbonate minerals and peat production by plants, before moving on to speculation on the early history of Earth’s atmosphere. At the end of the chapter, he argues that an increased greenhouse effect due to human activity would be a good thing, preventing a new Ice Age and allowing for better yields of crops! At the time, Arrhenius did not consider the risks of rising sea level and local disruption of agriculture, to mention only two potential downsides.

Posted by Philip Eagle, STM Content Expert

Sources and further reading:

 

 

Arrhenius, S. Ueber den Einfluss des atmosphärischen Kohlensäuregehalts auf die Temperatur der Erdoberfläche, Behang till Kongliga Vetenskaps-Akademiens Handlingar, 1896 22 (1,1), 1-102. General Reference Ac.1070

Arrhenius, S. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Fifth Series) April 1896 49 (251), 237-276. General Reference P.P.1433. Also available online at http://www.rsc.org/images/Arrhenius1896_tcm18-173546.pdf

Arrhenius, S, translated by Borns, H. Worlds in the Making. London: Harper & Brothers, 1908. General Reference 8562.cc.38

Brock, W H. The Fontana History of Chemistry. London: Fontana, 1992. General Reference YC.1992.a.2866

Bulletin of the American Meteorological Society, Document Supply 2388.000000

Chen, W-Y et al (Ed.). Handbook of Climate Change Mitigation. New York: Springer, 2012. Science, Technology and Business (B) 363.738747

Earth System Science Data, available online at http://earth-system-science-data.net/

Earth’s Future, available online at http://agupubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)2328-4277/

Graham, S. On the Shoulders of Giants. Greenbelt, MD: NASA Earth Observatory, 2000. Available online at http://earthobservatory.nasa.gov/Features/Arrhenius/arrhenius.php

Hudson, J. The History of Chemistry. Basingstoke: Macmillan, 1992. General Reference YC.1993.b.3347

Journal of Advances in Modeling World Systems, available online at http://agupubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1942-2466/

McGuffie, K and Henderson-Sellers, A. The Climate Modelling Primer. Chichester: Wiley-Blackwell, 2014. Science, Technology and Business (B) 551.6011

Matthews, J A (Ed.). Encyclopedia of Environmental Change. Los Angeles: SAGE Reference, 2014. Science, Technology and Business (B) 363.703

Mélieres, M-A and Maréchal, C. Climate Change: Past, Present and Future. Chichester: Wiley-Blackwell, 2015. Science, Technology and Business (B) 551.6

Nature Climate Change, Science, Technology and Business (P) 333.7205-E(2)

North, G R et al (Ed.) Encyclopedia of Atmospheric Sciences. Amsterdam: Elsevier/Academic Press, 2015. Science, Technology and Business (B) 551.503

Philander, S G (Ed.). Encyclopedia of Global Warming and Climate Change. Thousand Oaks, Calif: SAGE Reference, 2012. Available electronically in British Library reading rooms

Rodhe, H and Charlson, R (Eds.). The Legacy of Svante Arrhenius: Understanding the Greenhouse Effect. Uddevalla: Royal Swedish Academy of Sciences, 1998. General Reference YA.2000.a.37529

16 December 2016

9 famous scientists and their PhD theses

If you are currently working towards a PhD you might worry that your thesis is destined for life as a handy doorstop, or to gather dust on a forgotten Library shelf. But this work can be a stepping stone - either to a career in academia or something else altogether. With this in mind we decided to check out the British Library’s electronic theses service EThOS to see what treasures we could unearth from influential scientists while they were lowly graduate students.

From 1970-1974 Brian May, Queen’s famous guitarist, studied for a PhD investigating interplanetary dust in the solar system. He abandoned his studies when Queen started to have international success. Many years later he returned to Imperial to complete his PhD studies. His final thesis was awarded in 2008 and was entitled A survey of radial velocities in the zodiacal dust cloud.

Brian Harold May_PhD thesis EThOS

Peter Higgs, who shot to fame in 2013 after his discovery of the Higgs Boson (or God particle) was honoured with the Nobel prize in Physics, started his scientific career studying for a PhD - mysteriously entitled “Some problems in the theory of molecular vibrations”.

D-Ream singer turned astrophysicist Brian Cox started his academic career with a PhD studying in high energy particle physics at the University of Manchester. Things could only get better from there... (sorry!)

Prof_Brian_Cox
By cellanr (Prof Brian Cox) [CC BY-SA 2.0], via Wikimedia Commons

 

Rosalind Franklin is famous for producing the X-ray diffraction images of DNA that led to the discovery of its double helical structure. Her PhD research focussed on the molecular structure of coal and other organic materials.

Jocelyn Bell Burnell discovered radio pulsars while studying for a PhD at the University of Cambridge in the 1960s.  A visualisation of one of these pulsars was famously used as the cover art for Joy Division's best-selling album Unknown Pleasures.

JoyDivision_UnknownPleasures and Jocelyn Bell Burnell
Jocelyn bell Burnell image by Roger W Haworth (Flickr) [CC BY-SA 2.0], via Wikimedia Commons

 

Theoretical physicist Stephen Hawking obtained his PhD from the University of Cambridge in 1966 after being diagnosed with motor neurone disease in 1963.  His PhD thesis, properties of expanding universes describes his theory for the creation of the universe and was inspired by Roger Penrose's work on space time singularities.

Jim Al-Khalili presents popular science on radio and TV including Radio 4’s The Life Scientific. He started his career at the University of Surrey with a PhD on “Immediate energy deuteron elastic scattering from nuclei in a three-body model”. Jim (or Jameel) Al-Khalili is now Professor of Physics at the University of Surrey.

Jim Al-Khalili PhD thesis
By Vera de Kok (Own work) [CC BY-SA 3.0], via Wikimedia Commons

Sir Mark Walport investigated the “biology of complement receptors” for his PhD at the University of Cambridge. Complement receptors are key part of our immune system and are responsible for the detection of pathogens. He now serves the lofty position of Chief Scientific Advisor to the UK Government is former director of the biomedical research funder the Wellcome Trust.

Sir Paul Nurse is now President of the Royal Society and Director of the Francis Crick Institute. His PhD at the University of East Anglia investigated the organisation of amino acids in a species of yeast called Candia Utitlis.  Nurse continued to work on yeast after his PhD and in 1976 discovered the molecules which control the cell cycle in fission yeast. This discovery was honoured with the Nobel Prize in Physiology or Medicine in 2001.

Katie Howe