Science blog

Exploring science at the British Library

19 posts categorized "Digital scholarship"

23 August 2023

50 years on: Information Retrieval and the British Library

The logo of BLAISE, showing BLAISE in angular letters in white on blue, with the full title "British Library Automated Information Service" and the original "open book" British Library logo
The fiftieth anniversary of the foundation of the British Library is an opportunity to look back at the leading role the Library and its parent bodies played in introducing computerised information retrieval for science and medicine to the UK. Between 1965 and 1975 experiments in searching databases of medical research were carried out in partnership with the US National Library of Medicine (NLM)  together with computer scientists and medical users in the UK. Following the success of these experiments the Library launched BLAISE (British Library Automated Information Service)  as a national public service in 1977.

The NLM began publishing Index Medicus, an index of medical journal articles, in 1879. In 1960 printing was computerised and the machine readable data on tape became available for information retrieval. A publicly available US service, MEDLARS (Medical Literature Analysis and Retrieval System) opened in 1963 with MEDLINE  (MEDLARS online) going live in 1971. [1]

 In 1965 the NLM agreed with the National Lending Library for Science and Technology [2] to supply tapes in exchange for MEDLARS records of UK medical literature. With these tapes in hand the Office of Science and Technology Information [3]  funded Newcastle University to develop a retrieval package based on NLM’s IBM software to run on the university’s English Electric computer. Subsequent projects in 1973-74 tested the online environment and current awareness services with medical researchers and librarians in Leeds and Manchester over an online telephone link. [4]

The next step in service delivery was to establish online access to the NLM. University College London had set up a link to the US through ARPANET, the early version of the internet [5], and in 1973 British Library Research & Development [3] along with other public bodies, joined this network. This programme was historically significant as the first international communication over the internet. Project STEIN (Short Term Experimental Information Network) involved sixteen centres (e.g. the Royal Post-Graduate Medical School) each with its own terminal and trained intermediary.  The number of users (362) and searches (1217) was substantial and the study confirmed the need for intermediaries who were experienced in using the system and formulating searches. The clinicians and researchers who accompanied each session evaluated the results and gave feedback. Despite difficulties with telecoms, satisfaction was high as searches delivered articles that were new together with articles that were familiar to the users, thus increasing their confidence in the search. [6]

These encouraging results led the Library in 1977 to launch BLAISE, a fully supported public service providing Medline and databases for toxicology and cancer. Tapes were delivered monthly from Washington by diplomatic bag to a computer bureau in Harlow to run on an IBM 370 machine with NLM’s ELHILL retrieval software. Mounting tested software on an established bureau service meant that BLAISE went live within a year. Users benefited from the dedicated BLAISE PSS (Packet Switched Service) network and a support team that provided training, documentation and a help desk, alongside document supply from the British Library Lending Division at Boston Spa.[7] At first researchers and clinicians used Medline for checking references or keeping up to date but it has since become an essential tool for the evidence based medicine community to generate systematic reviews and contribute to the Cochrane Library.[8] From 1977 the Library was the sole provider of NLM databases in the UK but in a political decision in 1982 NLM, as a federal agency, was required to release its products to US online providers. With the ensuing competition BLAISE was no longer able to support a UK based service and it was relaunched as BLAISE-LINK, a UK portal for online access to NLM. Within a few years customers moved over to commercial online hosts and BLAISE-LINK closed. 

Today, the Library continues online healthcare with the publication of AMED (Allied and Complementary Medicine Database). This database supplements the coverage of Medline in areas such as alternative medicine, palliative care and rehabilitation. [9]

We have come a long way in fifty years.  In 1973 searching involved expensive telecoms and computer access, clumsy equipment  (who now remembers audio-acoustic couplers?) minimal records, complex Boolean search strings and the need for skilled medical librarians to navigate all these obstacles. Now, there is free access to the internet and PubMed, open access full text and sophisticated relevance searching empowering every user. Information has exploded:  in 1976, Medline and its associated files had 3.5 million records, by 2022, PubMed had 35 million. [10] 

References [BL shelfmark]

All URLs accessed on 7 July 2023.

[1] MEDLINE History. https://www.nlm.nih.gov/medline/medline_history.html

[2] The National Lending Library for Science and Technology (NLLST) was the predecessor of the British Library Lending Division and later, the Document Supply Centre. The service is currently available as British Library On Demand.

Barr, D. P. The National Lending Library for Science and Technology. Postgraduate Medical Journal42.493 (1966): 695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2466097/pdf/postmedj00407-0003.pdf

[3] The Office of Science and Technology Information (OSTI) was the predecessor of British Library Research & Development which promoted and funded R&D by the UK library and information community until its merger with the Library and Information Commission in 1999.

Baxter, P. "The role of the British Library R&D department in supporting library and information research in the United Kingdom." Journal of the American Society for Information Science 36.4 (1985): 276. https://www.proquest.com/openview/77a69cbd42dd0412f39b217892f95ac2/1?pq-origsite=gscholar&cbl=1818555 

[4] Barraclough, E. Information Retrieval, its origins in Newcastle. http://history.cs.ncl.ac.uk/anniversaries/40th/webbook/infoRetrieval/index.html

Harley, A. J., and Elizabeth D. Barraclough. MEDLARS information retrieval in Britain. Postgraduate medical journal 42.484 (1966): 69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465839/pdf/postmedj00398-0003.pdf

[5] Kirstein, P. T. "Early experiences with the Arpanet and Internet in the United Kingdom." IEEE Annals of the History of Computing 21.1 (1999): 38-44. https://citeseerx.ist.psu.edu/doc/10.1.1.112.8527

Computer History – Internet history of the 1970s.  https://www.computerhistory.org/internethistory/1970s/

[6]  Holmes, P. A description of the British Library’s short-term experimental information network project. pp 231-237 - 1st International On-line Information Meeting, London 13-15 December 1977 / organised by On-line Review, the international journal of on-line information systems. (1977). Oxford ; New York: Learned Information. [available in the British Library at shelfmark 2719.x.4085 ]

Holmes, P. (1978). On-line information retrieval: An introduction and guide to the British Library's short-term experimental information network project / P.L. Holmes. Vol.2, Experimental use of medical information services. (Research and development reports (British Library) ; no.5397). London: British Library Research and Development Department. [available in the British Library at shelfmark 2113.560000F BLRDR 5397 ]

Trials were also made with other scientific and engineering databases on the Lockheed Dialog system.

(7) Holmes, P. L. The British Library Automated Information Service (BLAISE). Online Review 3.3 (1979): 265-274. https://www.emerald.com/insight/content/doi/10.1108/eb024003/full/html       

BLAISE also provided bibliographic databases for the British National Bibliography and the Library of Congress, finally closing in 2002.

[8] McKibbon, K. A. Evidence-based practice. Bulletin of the medical library association 86.3 (1998): 396. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC226388/pdf/mlab00092-0108.pdf

Cochrane Library. https://www.cochranelibrary.com/about/about-cochrane-reviews

[9] Allied and Complementary Medicine Database (AMED) https://www.ebsco.com/products/research-databases/allied-and-complementary-medicine-database-amed

[10] Miles, W. (1982). A history of the National Library of Medicine : The nation's treasury of medical knowledge. (NIH publication ; no.82-1904). Bethesda, Md.: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Library of Medicine. [p.386 -3.5 m records, 1976] https://collections.nlm.nih.gov/bookviewer?PID=nlm:nlmuid-8218545-bk

PubMed Milestone - 35 Millionth Journal Citation Added. https://www.nlm.nih.gov/pubs/techbull/nd22/brief/nd22_pubmed_milestone.html

Further reading

Bourne, C., & Hahn, Trudi Bellardo. (2003). A history of online information services, 1963-1976, Cambridge, Mass. ; London: MIT. [Available in the British Library on open shelf: Humanities 2 Reading Room HUR 025.04]

Written by Richard Wakeford (Science Reference Specialist, Retired). Richard was a member of the BLAISE support team, 1981-1984.

23 November 2021

Climate change resources at the British Library

The British Library main building in St Pancras, seen over a hedge with a small tree to the left
(Photograph by Tony Antoniou)


The COP26 conference in Glasgow has ended, but the real work of reducing carbon emissions must now begin. The science staff and the British Library Green Network have created a collection guide now available on our website, which includes key items to provide information on the problems and potential solutions.

The guide includes books, journals and online databases that you can only access within the British Library if you have a Reader Pass, but there are also many links to trustworthy websites that contain a wealth of information on climate change, the Earth's climate, and the wider issues.

We will be keeping it up to date so that it will continue to be useful into the future.

18 October 2021

From Turning the Pages to Virtual Books

A hand-painted illustration of a cut cucumber and a portion of a cucumber plant.
"Garden cucumber" from Blackwell's Herbal, British Library 34.I.12 -13

Some of our earliest high-quality digitised manuscripts and printed books are now available again through our website for anybody to read. They were digitised from the mid-1990s on, using the "Turning the Pages" software created by the Library in collaboration with Armadillo Systems. You might remember seeing them on stand-alone electronic consoles in various parts of the Library. The digitisations include realistic animations of the pages being physically turned and laid down.

Some of the items involved are important in the history of science:

  • The complete Codex Arundel, a collection of pages from the private sketchbooks and notebooks of the Renaissance polymath Leonardo da Vinci, predominantly dealing with physics.
  • Highlights of Andreas Vesalius's "De Humani Corporis Fabrica", the first modern anatomical textbook, with artwork thought to be by the studio of Titian.
  • Highlights of Elizabeth Blackwell's "A Curious Herbal", the first British herbal by a woman, created in the 1730s to buy her ne'er-do-well husband out of debtors' prison.
  • Highlights of John James Audubon's famed "Birds of America".

Feel free to browse them on your computer.

 

07 May 2021

Wiley Digital Archive on history of science now available at the British Library

The words Wiley Digital Archive, with a logo of three books standing as if on a shelf
We are happy to announce that this week we have acquired the Wiley Digital Archives of several major learned societies. The collections currently available are those from the New York Academy of Sciences, the British Association for the Advancement of Science, the Royal Geographical Society, the Royal Anthropological Institute of Great Britain and Ireland, and the Royal College of Physicians. The database also includes scientific material from major British universities, digitised as part of the BAAS project.

Information in the archives includes field notes on Hausa Islamic law, beginners' lessons in the Mole language spoken in parts of Ghana, research for a government investigation into early-Victorian mine ventilation, reports on an earthquake in Erzerum, Turkey in 1859, a recipe for a "very rare and excellent" seventeenth-century "wound drink", and a huge range of maps. The Royal College of Physicians collections include a number of digitised incunabula and medieval printed books. For those items which might be harder to read, automated transcriptions are available.

Unfortunately the database cannot currently be used from outside the Library, but we are open again and any reader with an interest in the history of science is highly recommended to come in and try it out.

15 January 2021

zbMATH Open - mathematical database now free online

zbMATH Open - the first resource for mathematics. The logo is a white square containing a small grey square in the upper left corner and a larger red square in the lower right corner

We are very happy to hear that zbMATH, one of the most important bibliographic databases in the field of mathematics, is now freely available to all online. The database is run by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Arts and Sciences, and the funding to make it free to all was provided by the Joint Science Conference, the German national government organisation for science research funding and policy.

The database covers mathematics books and scholarly articles comprehensively since 1868, with some items from considerably earlier. It includes material from the paper abstracts journals Jahrbuch über die Fortschritte der Mathematik (1868-1945) and Zentralblatt für Mathematik (1931-2013). It can be searched by author and subject as normal, but also includes searching by mathematical formula and the subject-specific Mathematics Subject Classification. It includes not just abstracts, but independent reviews of the significance of important articles, although some of these are in German rather than English. It also has both forward and backward citation data. Where possible links to the online full-text item are provided.

The administrators are currently working on developing an API to allow content from zbMATH to be used in other digital information systems on an open access basis.

Anybody with an interest in mathematics is heartily recommended to try it out.

18 June 2020

Citizen Science and COVID-19

Your experience of the COVID-19 pandemic could be an important contribution to science. Researchers from diverse disciplinary backgrounds are keen to learn about your stories, insights, routines, thoughts and feelings. While some projects would be eager to receive diaries in the narrative style of Samuel Pepys or John Evelyn, others want more specific information in survey format.

Hand-drawn and painted cartoon illustrating various ways people have entertained themselves during lockdown
Illustration: Graham Newby, The British Library: Lockdown Rooms (3rd June 2020)

Citizen science engages self-selected members of the public in academic research that generates new knowledge and provides all participants with benefits. The engagement can vary from data gathering or participatory interpretation to shared research design. Different forms of citizen science can be referred to as public science, public participation in scientific research, community science, crowd-sourced science, distributed engagement with research and knowledge production, or trans-disciplinary research that integrates local, indigenous and academic knowledge.

Contributing to citizen science projects sustains a sense of control, sense of belonging (empowering feelings in and after isolation) and sense of being useful which are particularly important in uncertain times. According to the UK Environment Observation Framework, self-measured evidence is more trusted by people, and organisations that draw on data generated through citizen science are more trusted. Trust is linked to transparency. Better understanding of how scientific knowledge is produced, and having a role and responsibility in shaping the knowledge production process, are likely to enable citizen scientists to re-frame the often-uneasy relationship between society and science.

Scale is a distinctive feature of citizen science. The more people are engaged, the more comprehensive an understanding can be reached about the researched topic. The featured COVID-19 Symptom Study has become the largest public science project in the world in a matter of weeks:  3,881,488 citizen scientists are involved as of 18th June 2020. Big data allowed medics to develop an artificial intelligence diagnostic that can predict the likelihood of having COVID-19 based on the symptoms only: a vital tool indeed when testing is limited.

The citizen science initiatives highlighted here, COVID-19 Symptom Study, COVID-19 and You, and COVID Chronicles, may inspire you to contribute to them or find other projects where you can take an active role in developing better understanding of current and future epidemics.

COVID-19 Symptom Study
https://COVID.joinzoe.com/data
Epidemiology
Institutions: King's College London, ZOE
Launched: 25th March 2020
Your contribution helps you and researchers understand COVID-19 and the dynamics of the pandemic (UK, USA).
How: Submit your physical health status regularly.

COVID-19 and You
https://nquire.org.uk/mission/COVID-19-and-you/contribute
Social sciences
Institutions: The Open University, The Young Foundation
Launched: 7th April 2020
Your contribution helps you and researchers understand how COVID-19 is affecting households and communities across the world.
How: Fill in an online survey with choices and narratives.

In addition to supporting current research, your contribution could add to future inquiries as well. Collecting and archiving short personal stories ensures authentic data will be available when researchers in the future look back to us now with their research questions. Reliable data should be collected now, while we are still living in unprecedented times. It is especially important to record the experiences of people from less privileged backgrounds, in contrast to earlier pandemics where the voices of all but the upper and middle classes, and the political, legal and scholarly elite, have often been lost to history. COVID Chronicles, an archival initiative, is doing just that. COVID Chronicles is a joint project: BBC 4 PM collects and features some of the stories and The British Library archives them all for future academic inquiries.

COVID Chronicles
https://www.bbc.co.uk/news/entertainment-arts-52487414
History, social sciences
Institutions: BBC Radio 4, The British Library
Launched: 30th April 2020
Your contribution helps you and future researchers understand how people experience the COVID-19 pandemic in their daily life, at a personal level.
How: Submit a mini-essay (about 400 words) to BBC Radio 4 PM via e-mail: pm at bbc dot co dot uk. Your essay will be archived by The British Library and made available for future research.

The gradually easing lockdown and the anticipated long journey of national and global recovery generate a growing appetite to record, reflect on and analyse the COVID-19 epidemic's influence on our life. Not all "citizen science" projects observe high standards of privacy and ethical responsibility, however. Before joining in any research with public participation, consider the principles of citizen science suggested by the European Citizen Science Association and the questions below:

Five questions before joining a citizen science initiative

  1. Can you contact the researchers and the institution(s) they belong to with your questions and concerns?
  2. Is the research approach clear to you? In order words, is it clear to you what happens to your contribution, how it shapes the investigation and what new knowledge is expected?
  3. Is your privacy protected? In other words, is the privacy policy clear to you, including how you can opt out any time and be sure that your data are deleted?
  4. Are you contacted regularly about the progress of the research you are contributing to?
  5. Are you gaining new transferable skills, new knowledge, insights and other benefits by participating in the research?


Further reading:

Bicker, A., Sillitoe, P., Pottier, J. (eds) 2004. Investigating Local Knowledge: New Directions, New Approaches. Aldershot : Ashgate.
BL Shelfmark YC.2009.a.7651, Document Supply m04/38392

Citizen Science Resources related to COVID-19 pandemic (annotated list) https://www.citizenscience.org/COVID-19/
[Accessed 18th June 2020]

Curtis, V. 2018. Online citizen science and the widening of academia: distributed engagement with research and knowledge production. Basingstoke, Hampshire: Palgrave Macmillan.
Available as an ebook in British Library reading rooms.

Open University. 2019. Citizen Science and Global Biodiversity  (free online course) https://www.open.edu/openlearn/science-maths-technology/citizen-science-and-global-biodiversity/content-section-overview?active-tab=description-tab
[Accessed 18th June 2020]

Sillitoe, P. (ed). 2007. Local science vs global science: approaches to indigenous knowledge in international development. New York : Berghahn Books.
BL Shelfmark YC.2011.a.631, also available as an ebook in British Library reading rooms.

Written by Andrea Deri, Science Reference Team

Contributions from Polly Russell, Curator, COVID Chronicles, and Phil Hatfield, Head of the Eccles Centre for American Studies, are much appreciated.

 

07 May 2020

The Future of Research Outputs

By Susan Guthrie, Maja Maricevic and Catriona Manville

 

Earlier this year, the British Library and RAND Europe hosted a roundtable discussion on how research outputs – the different ways research can be disseminated – are changing. It brought together representatives from research funders, publishers, research institutes, government and universities to explore the issue and its implications.

Workshop participants discussed RAND Europe’s recent study for Research England that showed that researchers currently produce a diversity of output forms, the range of which is likely to increase. Although researchers expect to continue to produce journal articles and conference contributions, they also want and plan to diversify the outputs they produce, with a particular focus on those aimed at a wider, non-academic audience.

The British Library also presented its current work and experience in collecting, preserving and making accessible a range of research outputs such as research data, web and social media, as well as new and evolving output formats.

The discussion addressed the following five questions:

How do we define and identify a research output?

There are many different types of outputs from research, from traditional journal articles and books to more diverse examples such as computer code, artworks, blogs, datasets and peer review contributions. One of the challenges is to identify which are actually outputs for dissemination, and which represent a stage in the development of research on the pathway to producing those outputs. An example of the latter is a Github repository for managing and storing revisions of projects, which may be fluid and changing on an ongoing basis. Other products – for example social media exchanges – are a fixed point but may not represent a researcher’s final perspective on a topic, rather the emergence and discussion of views and ideas. This fluid and dynamic mix of different media emerging over time makes it challenging to understand what is a ‘research output’ as traditionally defined. 

Where does responsibility lie?

Research is increasingly global and research outputs may span national borders – hence, drawing lines between what is and what is not ‘UK research’ is not straightforward. There is a limit on the extent to which a full record of all research endeavour can be provided. Different stakeholders – libraries, funders, institutions, publishers – can either look to shape and drive desirable changes in behaviour or respond to changes as they emerge from the ‘bottom up’. Funders in particular have the potential to drive researcher actions through the use of incentives.

How do we manage quality control?

As the range and nature of outputs broaden, questions emerge around how to assess the quality of the outputs and decide what is part of the scientific record. Peer review, the current approach, has its weaknesses. A key test of the quality and rigour of research is the extent of uptake and use by the academic community over time. In that sense, the change in types of outputs makes little difference to the ultimate assessment of their quality. However, as the volume of research products increase, alongside increasing concerns over reproducibility, fake news and the reliability of evidence, being able to point to legitimate and reliable sources may be of increasing value.

Do we have the support infrastructure for now and the future?

The growing diversity of research outputs creates new challenges in relation to the complex infrastructure needed to support their review, dissemination and storage across different players in the field e.g. funders, publishers and libraries. Identifying areas in which an intervention could make systems more efficient and futureproof could help but needs to be better understood. Securing digital platforms for sharing and collaborating on research could be part of these interventions, as could increasing digital archiving for discovery and access.

What are some possible solutions?

DataCite logoPermanent digital links to research outputs, which act as unique IDs for outputs to enable their consistent identification and referencing, may be a key part of the solution. Ensuring their consistent use, however, is a potential challenge and an important route forward to help make this problem more tractable. Participants discussed the successful example of DataCite in establishing an international solution. AI may also be part of the solution, in terms of discoverability of outputs. However, there are potential risks associated with this, such as biases, and a lack of knowledge around the way information is curated and presented by algorithms (for example, when using Google Scholar). Linked to these technological solutions is the need for data literacy, within and beyond the research community, as well as creating a culture of openness and transparency across all stages of the research cycle.

The changing nature of research outputs has the potential to affect a wide range of organisations and people in the sector. Joined-up thinking and action could help. As the diversity of research outputs increases, we have to make choices. We can either be reactive, responding to needs and challenges as they emerge, or proactive, to help shape and guide the nature and effective preservation of research outputs. A more proactive stance could help drive research towards better practice in information storage, sharing and communication, but requires early action and shared goals at a sector level. Continued dialogue and sharing of views on this topic could be important to make sure these issues are appropriately and adequately addressed.

 

Dr Susan Guthrie and Dr Catriona Manville are research leaders in science and innovation policy at RAND Europe. Maja Maricevic is head of higher education and science at the British Library.

02 April 2020

Publishers offering coronavirus articles free.

A pair of hands in blue disposable gloves frames a green petri dish with a model coronavirus in the centre
Image by danielfoster437 under a CC-BY-NC-SA 2.0 license


As the coronavirus pandemic continues to dominate news and lock down our daily lives, most of the major academic publishers have agreed to make their relevant articles available free online, even if they would otherwise be published with a paywall. Here is a set of links to various publisher sites, whether you are working on it yourself or looking for something to pass the time with.

American Chemical Society

American College of Physicians

Brill

British Medical Journal

Cambridge University Press

Cell Press

Chinese Medical Association

Elsevier

Emerald

European Respiratory Society

F1000

Frontiers

Future Science Group

Healthcare Infection Society

IEEE

IET

Informa Pharma Intelligence

Institute of Physics

Journal of the American Medical Association

Karger

The Lancet

National Academy of Sciences

New England Journal of Medicine

Oxford University Press

Royal Society

SAGE

Science

Springer Nature

Wiley

Wolters Kluwer

14 January 2020

INTRODUCING THE WISE FESTIVAL (WOMEN IN SCIENCE EVENTS) – 11 February 2020

A handwritten letter from Ada Lovelace to Charles BabbageThe British Library is joining in the International Day of Women and Girls in Science, celebrating and raising the voices of women in science with a one day mini festival. Our events and talks will encourage you to laugh, sing and think. Every few days this blog will look in more detail at the participants and their involvement with the event.

From 1pm drop in to our free Entrance Hall sessions, including fun scientific presentations, hands-on activities and a chance to create your own (bio)selfie using the bacteria swabbed from your cheek. There’s something for all ages and levels of science knowledge. See the full list of activities here.
Then join us for an evening of talks to hear from women about their experiences of working in the sciences. This is a ticketed event and tickets can be purchased from our website.

The British Library holds one of the most comprehensive national science collections in the world, ranging from ancient manuscripts grappling to understand different aspects of the world, prior to the development of science as we know it today, to the latest scientific publications deposited at the Library through the electronic legal deposit every day. The British Library preserves the UK scientific record, supports scientific research and enables access to science for all, which includes supporting equality and diversity in science. During 2020 the Library’s exhibition Unfinished Business: The Fight for Women's Rights will be looking into the struggle for women’s rights in all walks of life which includes an ongoing struggle for equality in all areas of science, technology and engineering. The WISE Festival is an opportunity to start our reflection on women’s rights and to celebrate the achievements of women in science in a way that we hope will be fun, inspirational and thought-provoking.

Join us next time to find out more about Sunetra Gupta.

WISE (WOMEN IN SCIENCE EVENTS) Festival, British Library 11 February 2020.
www.bl.uk/events/wise-festival

23 January 2019

Lab notebooks - handwriting at the core of science

McLaren notebook
Page from Anne McLaren's notebook (shelfmark Add MS 83844) covering embryo transfer experiments in mice, 1950s. (Copyright estate of Anne McLaren)


Today is World Handwriting Day, and we thought we’d pay our respects to the most important role handwriting plays in science, one which you might not have heard of if you aren’t a practicing scientist. This is the “lab notebook”, a scientist’s daily diary of all their experiments, thoughts, and other scientific activities. Until relatively recently, these were always handwritten, as they were meant to record what, in detail, someone was doing as they did it. Waiting to create them until work was finished caused too much risk of forgetting or distorting something.


Lab notebooks grew out of the personal diaries and notebooks of individual researchers. Some notebooks by well-known scientists have become Library treasures in their own right. One of the most famous works in our Treasures of the British Library exhibition is the Codex Arundel, a collection of notes written by Leonardo da Vinci (although probably not in the order they were bound) in the sixteenth century. At the other extreme of history, the Treasures Gallery currently displays the biologist Anne McLaren's lab book on embryo transfer in mice. Outside the BL, most of the lifelong field and theoretical notebook collections of Charles Darwin are digitised and available online, as are some of Albert Einstein's most significant theoretical notebooks. At the other end of accessibility, some of the lab notebooks of Marie and Pierre Curie, held by the National Library of France, are reported to still be so radioactive that they are not safe to handle without protective clothing.


Laboratory notebooks later became an even more important record of exactly what was done, as lone researchers were replaced by academic and private-sector research groups, science and technology became ever-more important to society, and scientists were expected to describe their methods in detail so that they could be replicated and turned into innovative technologies, materials and treatments. Additionally, until quite recently, American patent law worked on a “first to invent” basis whereby the person who could prove that they had the idea for an invention first, or their employer, had the right to a patent. Laboratory notebooks were the main source of evidence for this. In recent years, scientific misconduct has become a higher-profile issue, as scientists worry about a “replicability crisis” where too many uncertain or exaggerated results have been published. Lab books help prove that the work was done as the researchers claim, or the detail expected in them make discrepancies easier to recognise. And the notebooks of eminent scientists are a rich source for scientific historians.


By the latter part of the twentieth century, some organisations had very detailed instructions for how laboratory notebooks should be completed and stored. Lab books had to be written exactly as the work was carried out, or as soon as possible – no jotting notes on scraps of paper and writing them up at the end of the day. Notebooks were considered the property of the employer or the university, and could not be removed from the lab. And they had to be clearly paginated with no chance of pages being removed or replaced.


Many laboratories still use paper notebooks, due to the ease of simply writing notes down as you go. In many types of science, electronic devices are at risk of being exposed to spillages or damaging electromagnetic conditions, or are simply unwieldy. Some researchers also like to keep their detailed records to themselves instead of sharing them with a group. Some research groups and organisations are now moving to electronic recording, but the lifetime of electronic data can be questionable due to failure to back up and the lifespan of media. Specifically-designed electronic laboratory data systems are more secure. They are more common in industry than academia, as academics are more independent and less likely to respond to top-down orders, and academic institutions can be less able to afford the necessary software and hardware. The advantages of electronic research notes systems are that you can save large amounts of original data directly into the system without retyping or printing it, clone records from earlier experiments to save time, search your records more easily, share data within the group easily, and track the history of records. Now data is often electronically recorded and can be directly copied into a laboratory system without a transcription stage. It is possible to use general project and collaboration software packages such as Evernote, SharePoint, or GoogleDrive but specifically-designed software is now available. 


In 2011, Gregory Lang and David Botstein published a scanned copy of the entire lab notebook covering the research leading to a paper on yeast genetics, as an attachment to their e-journal article.


Modern lab books rarely find their way into the British Library collection, but our most famous example is the collection of Alexander Fleming, the discoverer of penicillin (also including records of earlier experiments by his mentor Sir Almroth Wright). As well as the material by Anne McLaren mentioned earlier, we also have some material from the photography pioneer Henry Fox Talbot, electrical inventor David Edward Hughes, and biologist Marilyn Monk.

Sources and further reading:
Barker, K, At the bench: a laboratory navigator, Cold Spring Harbor: Cold Spring Harbor Press, 2005. pp. 89-99. Shelfmark YK.2005.b.1888
Baykoucheva, S. Managing scientific information and research data, Oxford: Chandos Publishing, 2015. Available electronically in British Library reading rooms.
Bird, CL, Willoughby, C and Frey JG, "Laboratory notebooks in the digital era: the role of ELNs in record keeping for chemistry and other sciences", Chemical Society reviews, 2013, 42(20), pp. 8157-8175. Shelfmark (P) JB 00-E(105) or 3151.550000.
Elliott, CA, "Experimental data as a source for the history of science", The American archivist, 1974, 37(1), pp. 27-35. Shelfmark Ac. 1668 or 0810.390000, also available electronically in British Library reading rooms.
Holmes, FL, "Laboratory notebooks: can the daily record illuminate the broader picture", Proceedings of the American Philosophical Society, 1990, 134(4), pp.349-366. Shelfmark Ac. 1830 or 6630.500000, also available electronically in British Library reading rooms.
Stanley, JT and Lewandowski, HJ, "Lab notebooks as scientific communication: investigating development from undergraduate courses to graduate research", Physical review: physics education research, 2016, 12, 020129, freely available online at https://journals.aps.org/prper/pdf/10.1103/PhysRevPhysEducRes.12.020129.
Williams, M, Bozyczko-Coyne, D, Dorsey, B and Larsen, S, "Appendix 2: Laboratory notebooks and data storage", in Gallager, SR and Wiley, EA, Eds. Current protocols essential laboratory techniques, Hoboken: John Wiley & Sons, 2008. Shelfmark YK.2008.b.6299 or m09/.30081

Science blog recent posts

Archives

Tags

Other British Library blogs