Science blog

Exploring science at the British Library

Introduction

Find out about social sciences at the British Library including collections, events and research. This blog includes contributions from curators and guest posts by academics, students and practitioners. Read more

12 November 2018

New psychology and nature databases on trial at the BL

Starting today, users in the British Library Reading Rooms can use two new databases from Alexander Street, which are on trial until mid-January 2019. The usage figures in the next two months will determine whether we take the databases permanently.

An advertisement for "Psychological Experiments Online" shows a group of people in white coats standing with their faces to a wall and their hands over their head, overseen by a man wearing sunglasses and militaristic uniform, and armed with a stick.
Psychological Experiments Online has information on some of the most famous (or notorious, given the dark conclusions of some of them) experiments in psychology since 1900, with articles, archive material, sound or video interviews with researchers and participants, and even recordings of the experiments themselves when available.

An advertisement for the "BBC Landmark Video Collection" shows a collage of images of animals and plants.
The BBC Landmark Video Collection has complete episodes of some of the BBC's most significant nature documentary series from the last fifteen years. All of them have full subtitles and searchable transcripts.

Note that to use these databases you will have to use our desk PCs within the Reading Rooms. For the full effect of sound and video material, you will need to use a PC with headphones, although most of those in the Science reading rooms are now fitted with them.

Please can you give any feedback to the enquiry desk staff, or to [email protected]

Posted by Philip Eagle, Subject Librarian - STM

15 October 2018

Stephen Hawking - the last publications

The cover of Stephen Hawking's book "Brief Answers to the Big Questions", showing a black circle surrounded by multi-coloured light.
Philip represented the Library at the launch of Professor Stephen Hawking's last, posthumous, popular work, Brief Answers to the Big Questions. The book, which Hawking was writing at the time of his death, includes ten essays summarising his views on the ten questions which he was most frequently asked in interviews or at public events, such as "Is there a god?", "Is time travel possible?", and "Will we survive on Earth?".

Additionally, the launch saw discussion of Hawking's last published scholarly work, a paper dealing with the so-called "Information Paradox of Black Holes", the fact that Hawking's model of black holes, in which all information is lost when matter is sucked into a black hole contradicts a major principle of quantum mechanics, that information about a system cannot be permanently lost. Malcolm Perry and Andrew Strominger, two of Hawking's collaborators on the paper, also took part in the discussion.

A preprint of this paper is currently available on ARXIV at https://arxiv.org/abs/1810.01847, meaning that both extremes of Hawking's career are free to read online, his PhD thesis being available on the University of Cambridge's Apollo scholarly repository, at https://www.repository.cam.ac.uk/handle/1810/251038.

Posted by Philip Eagle, Subject Librarian - STM

10 October 2018

Andreas Vesalius - The most famous Belgian you have never heard of

This week, the episode of Sky Arts’ Treasures of the British Library featuring the actor Jim Carter, who you might remember as Mr. Carson in Downton Abbey or, if you are a bit older, Philip Marlow’s father in The Singing Detective, was broadcast. One section covered Jim’s interest in anatomy, and among the items we showed him was one of our copies of Andreas Vesalius’s paradigm-shifting anatomy textbook, Atlas of the Human Body, the first truly scientific anatomical work. The copy shown in the programme is our copy of the book's first edition, which was owned by Hans Sloane, a famous eighteenth-century doctor and collector whose collections of books, antiques and curiosities formed the original core of both the British Museum and the British Library. I showed the book to Jim in the programme, and here is some more information on Vesalius.

It is a standing joke, much to the annoyance of Belgians, that it is difficult to name great descendants of their proud kingdom in Western Europe. Mentions of Tintin and Poirot (fictional characters) or Jean Claude Van Damme (The muscles from Brussels) may just accentuate their irritancy. However, one of their greatest sons, one Andreas Van Wiesel, who would adopt the more impressive Latinised name of Vesalius, changed anatomy and medicine forever and he really did know about muscles. His magnum opus De Humani Corporis Fabrica, published in 1543, was both a paradigm shift for the study of human anatomy and also a work of the finest aesthetic beauty.

An image shows a bearded man in rich Renaissance clothing holding the arm of a flayed corpse and demonstrating the muscelature.
Andreas Vesalius, a portrait included in "De Humani Corporis Fabrica"

 Vesalius chooses his parents well and is born into a family of physicians in 1514 in Brussels, then part of the Holy Roman Empire. Initially studying at the University of Louvain, he completes his doctorate in Padua in 1537 and becomes the chair of anatomy and surgery at the tender age of 23; however, this was not considered an especially important branch of medicine compared to the more exciting emerging areas of lotions and potions.

His big break comes when a local judge, impressed with his work, permits use of corpses of executed criminals thus enabling him to perform comparative dissection of the human form. Such opportunity was denied to the great Galen of the second century who despite being physician to the stars such as the gladiators and emperors, only ever worked on animals due to the religious dogma of the time.

Vesalius quickly realised that Galen had simply extrapolated his findings to humans and consequently had made a huge number of glaringly embarrassing assumptions and errors.

Most notably Galen thought that blood was made in the liver and then used for fuelling muscles, and he also thought there were holes in the septum, allowing blood flow from one side of the heart to the other. Galen incorrectly described the human jawbone as being made of two bones, like that of a canine and he was completely wrong about the shape of the human liver. Vesalius was also able to demonstrate that males and females have identical numbers of ribs, the biblical orthodoxy was that men had one less because God made Eve from Adam’s rib.

The frontispiece of "Fabric of the Human Body", showing Vesalius dissecting a corpse in a classical theatre surrounded by a large group of allegorical figures.
The frontispiece of the book, showing Vesalius dissecting a body in allegorical surroundings

 

Vesalius then pulls another masterstroke as he goes about publishing this great work, which is essentially the human anatomy in seven books. He employs an artist out of the school of Titian to do the illustrations. These stunningly beautiful drawings of figures striking theatrical poses in classical landscapes grab the limelight, and they will be for ever be known as the muscle men. Vesalius stock rises and he becomes physician at the imperial court of Charles V and later to his son Philip II of Spain. Vesalius is aged 29 and at the height of his powers, 1543 is his annus mirabilis.

An anatomical illustration showing a flayed man from the side, facing the left, in front of a picturesque landscape with ruins. His left arm is raised and his right arm held out and downwards.
One of the "muscle man" images from the book

The frontispiece of De Fabrica shows Vesalius performing a dissection, centre stage playing to a packed house; it is literally standing room only and an entirely allegorical scene. Three large robed figures loom imposingly at the front, surely a nod to the ancient wisdom of Galen, Socrates and Hippocrates. Right at the epicentre stands Vesalius one hand on the corpse and the other pointing towards the heavens, a good move to be acknowledging God is on his team also.

Then in 1564, he has his annus horribilis and for the man with the surgical Midas touch, it all appears to go wrong. One story suggests he dissected a corpse who wasn’t quite as dead as he might have been and possibly as a form of penance he was advised to do a tour of the Holy Land; a journey from which he would never return. A second possibility is that he fell foul of the Inquisition, causing this empirical man of science to find making the pilgrimage a good idea.

He dies in the same year aged 50 in mysterious circumstances on the Greek island of Zakynthos, his burial site and grave remain unknown. Unlike his working life, which is referenced with earth shattering evidence based medicine; his final year is shrouded in mystery. No monument or memorial depicts his final resting place. Perhaps the only epitaph needed is de humani corporis fabrica. Anatomy and medicine changed forever, his legacy lives even if his name and accomplishments have been lost to most.

By Matt Hunt, Head of Research User Services

25 September 2018

New Scientist Live

A poster for "New Scientist Live", showing abstract red globes on a black background.
I visited New Scientist Live at Excel on Friday, which is an annual event aimed at popularising science, promoted by the weekly popular science magazine. There were a wide range of exhibitors, a mixture of learned societies, universities, technology companies, commercial and charitable organisations offering science "experiences", and makers of scientific ornaments and clothing.

There were also forty-minute talk slots throughout the day by different speakers on current science. The celebrity names were on a VIP stage offered only to those who bought more expensive tickets, but the other talks I attended were all very interesting.

Lee Cronin from Glasgow University described his work on creating a chemical computer, using the two states of a reversible Belousov-Zhabotinsky reaction as the equivalents of the binary 0 and 1. At the moment, the system is at proof of concept stage, but it holds the potential to produce computers more powerful than anything achievable using traditional solid-state electronics.

Paul Bernal gave a somewhat depressing but convincing talk on the difficulties of preventing online "fake news" and bullying. "Fake news" arguably dates back to the early modern era or even earlier, with the circulation of slanderous woodcut broadsheets and songs about peoples' political enemies, while online bullying essentially transfers eternal human social dynamics onto social media, with the novelty lying in the speed and scale with which such behaviour can occur. Bernal pointed out that "fake news" on Facebook and bullying on Twitter are negative versions of precisely what the platforms have been designed to do in terms of, respectively, acting as a powerful advertising medium and providing a means of large scale conversation which anyone can join. Bernal told the cautionary and morally ambiguous story of Brenda Leyland, a woman who bombarded the parents of the missing child Madeleine McCann with online allegations that they had killed their daughter... and was then driven to suicide by the hounding she received from the traditional news media.

James Wong discussed the argument (commonly made by organic-farming campaigners) that nutrient levels in plant foods have been declining due to industrialised food production. His arguments were that this has been observed, and is probably due to faster-growing varieties failing to absorb minerals as efficiently, but that the effect is probably not significant compared to other causes of variation in crop nutrient content such as weather and storage conditions, and is outweighed by the sheer increase in food quantity and variety that modern agriculture and international trade have achieved.

Patricia Vargas's talk was billed somewhat misleadingly as a discussion of whether AIs deserve human rights, but instead dealt more with characteristics that robots might be designed with, that would make humans more likely to accept them in their daily lives and form emotional attachments to them. She mentioned in particular robot pets, such as PLEO, based on a baby dinosaur, and Paro, based on a baby seal.

Fianlly, Mark Miodownik gave an entertaining talk, with demonstrations, on the nature and history of kerosene as a fuel.

17 August 2018

The 150th anniversary of the first observation of helium

Saturday is the 150th anniversary of a total eclipse of the Sun that was seen across a wide band of Asia on 18th August 1868. Any total eclipse is interesting, but this one is particularly historic for chemists, as it was during this eclipse that observations were made that, with hindsight, led to the discovery of helium, the first element to be discovered in space before it was found on Earth.

NASA eclipse
Image of total solar eclipse in 2017, photographed by Carla Thomas. Copyright NASA

However, the story often told in encyclopaedias, that Pierre Janssen and Norman Lockyer discovered helium by observing the 1868 eclipse, is far too simple. In fact, Janssen, who was in India and is often credited with the discovery, was interested in completely different things, and never claimed any credit during his lifetime, Norman Pogson, who was in India and was the first person to speculate that something unusual might be happening, was forgotten, and Norman Lockyer, who is often credited as the co-discoverer and made the biggest contribution, wasn’t in India and made his discoveries without needing the eclipse.

Helium is the second-most-common element in the universe after hydrogen, but is very rare on Earth, and odd in other ways. It is one of the so-called “noble gases”, that, because they have a particular number of electrons, are uniquely happy to exist as single atoms and reluctant to react with other elements. Helium only exists on Earth because it is given off when many radioactive elements naturally decay. Once produced, because it is so light and so non-reactive, it usually flies straight out of the atmosphere and vanishes into space. It only stays on Earth if it is produced deep underground and trapped within rocks. However, helium is very common in stars, including our Sun, because the energy of most stars comes from hydrogen atoms being fused into helium, and stars’ greater gravity than the Earth keeps it in.

So how was it possible to find helium in the Sun by looking at eclipse light?

For reasons too complicated to explain here, electrons in atoms and molecules can only have certain precise amounts of energy. They can climb from one amount to a higher one by absorbing a photon of light, or drop to a lower one by emitting a photon of light. The amount of energy contained in a photon varies according to the wavelength of the light, and so this means that atoms or molecules can only absorb or emit light of very specific wavelengths. As a result, if you shine a light through a particular substance, the light that comes out will have certain wavelengths and colours of light reduced or missing (an absorption spectrum), and if you heat up a substance to the point that it starts glowing, the light produced will be mainly or only of the same specific wavelengths and colours (an emission spectrum). By studying the light absorbed or emitted by a substance, we can derive a lot of information about what it is and what its structure might be.

The first step in the story of the discovery of helium happened in 1814, when the lens-maker turned physicist Joseph Fraunhofer split sunlight using a telescope, prism, and diffraction slit to create a spectrum broad enough to notice that there were dark lines, so-called "Fraunhofer" lines, where particular wavelengths of light were simply not present. In 1834, David Brewster suggested that the Fraunhofer lines were due to light of specific wavelength being absorbed by gas either within the Sun or in the Earth's atmosphere. James D Forbes suggested that the dark lines could be proved to originate from the Sun rather than the Earth's atmosphere by observing light from the edge of the Sun's disc during an eclipse - as this passes through more of the Sun's atmosphere on its path to the observer, the lines will be stronger if they are produced by the solar atmosphere.

Physicists and chemists began studying the absorption and emission spectra of known substances and found that their characteristic lines were constant. In 1857 William Swan showed that particularly strong dark lines in the yellow region of the Sun's spectrum, known as the D lines, corresponded to the emission spectrum of sodium - something we are all familiar with now given the yellow tinge of sodium-vapour streetlights.

In 1859, Gustav Kirchhoff and Robert Bunsen (of gas burner fame), at the University of Heidelberg, were among the scientists who were making systematic studies of the spectra of different elements. When a major fire broke out in the city of Mannheim, across the valley, they playfully turned their spectroscope on the light from the flames, and were able to identify the characteristic emission spectra of strontium and barium. This experience made them realise that, if they could discover trace elements in a burning building, the Fraunhofer lines might be the key to discovering the elements present in the Sun.

The following year, the two were studying the spectrum of mineral water from a major local spa, Bad Dürkheim. They spotted two blue lines that were found in the spectrum of no known substance, and guided by this managed to prepare and purify compounds of a previously unknown element, caesium. This was the first new element to be discovered using spectroscopic methods. Within the next few years, Kirchhoff and Bunsen would discover rubidium by a similar route, and William Crookes would discover thallium.

In 1868, a total eclipse of the Sun was predicted to occur in India. The eclipse ws expected to have six minutes of totality, an extremely long time by the usual standards in which to perform observations. Spectroscopists were particularly interested in the eclipse, as with the main part of the Sun obscured from the Earth it would be possible to study the light from the Sun's outer atmosphere, potentially helping to investigate both the Sun's chemical composition and its internal structure.

The French astronomer Pierre Janssen had already made his name in the field of the solar spectrum. He had invented a much-improved astronomical spectroscope with the instrument maker Ignazio Hofmann, although the two men quickly fell out bitterly about whose contribution was greatest. In 1866 he had captured the absorption spectrum of water vapour, by a logistically challenging experiment in which he viewed the light given off by sixteen gas burners through long iron pipes filled with high-pressure steam, and verified which of the Fraunhofer lines were produced by it as sunlight passed through the Earth's atmosphere. He was selected by the French Bureau of Longitude to make a government-funded trip to India.

Science Museum spectroscope
1880 automatic spectroscope by John Browning. Image by Science Museum, released under a CC-BY-NC-SA licence

Meanwhile, the government of the British Empire, rulers of India at the time, were making their own plans for scientific observations of the eclipse. The main expedition, led by Major James F Tennant, headed for the town of Guntur in Andhra Pradesh, in Southeastern India. Meanwhile, Norman Pogson, director of the Madras Observatory, headed to Machilipatnam (then known to English-speakers as Masulipatam), closer to the coast. When Janssen arrived in India, he also considered Machilipatnam, but decided that on the coast there was too much risk of fog and cloud. He decided to go to Guntur as well, possibly because it had at one time been ruled by the French and there were still some wealthy French merchants living there. Tennant's team moved into the British government compound, while Janssen set up at the home of one Jules Lefaucheur. Janssen generously helped Tennant to set up his spectroscope and telescope.

When the eclipse occurred, all the investigators paid attention to the spectrum. Janssen did not mention anything unexpected. Tennant saw an orange line which he thought was the normal sodium D line. Only Pogson saw something unusual - a third line close to the sodium D line, but not identical with it.

Pogson report
Pogson's eclipse observations, from his printed report.

It was not until the following days that Janssen made the realisation that would be his real breakthrough of the event, and the one that popular history would later confuse with the discovery of helium. He realised that the emission spectrum of the solar atmosphere and prominences was so strong that, if one could focus the spectroscope on the precise edge of the Sun, they might be visible even without an eclipse. He experimented and found that it was entirely possible, but was easiest if you moved the spectroscope to try to find the spectrum, rather than trying to focus visually on the edge of the Sun. He excitedly wrote to his wife in a letter, "They sent me to observe the eclipse for five minutes, and I am bringing back a perpetual eclipse from India." Finally, he sent a letter to the Academy of Sciences, announcing his discoveries for the first time.

Back in London, Norman Lockyer, a civil servant and prominent amateur astronomer, with a great interest in studying the Sun, was independently realising that the spectrum of the outer atmosphere of the Sun could be viewed by accurately focussing a spectroscope, without any need for an eclipse. He also seems to have somehow got a copy of Pogson's report with its reference to a previously unidentified line in the spectrum. In October, he received a new spectroscope and managed to focus on the solar atmosphere and obtain its emission spectrum. He also noticed a new line near the D line. Among the organisations he sent preliminary reports to was the French Academy of Sciences, his letter arriving within a few days of Janssen's report from India, both being read out at the same meeting on 26th October. In 1872, to avoid a potentially ugly interpersonal and international row, the French government issued a medal featuring both Janssen and Lockyer to commemorate their solar discoveries.

By the end of the year, both Janssen and Lockyer were convinced that the yellow line near the sodium D line was new. Lockyer and the chemist Edward Frankland spent some time experimenting with the spectrum of hydrogen under different conditions, and by the end of it were convinced that the Sun consisted mostly of hydrogen, but the the yellow line could not be produced by that element. By 1871 Lockyer was convinced that the yellow line was produced by a new element never found on Earth which he named "helium", but did not make such an extreme speculation in public, only in private communications with other scientists. The first public statement of it is believed to have been in Sir William Thompson's presidential address to the British Association for the Advancement of Science in 1871. This concluded the series of events that led, in later years, to Janssen and Lockyer wrongly being jointly credited with the discovery of helium in 1868.

Why was Pogson forgotten, even though Lockyer credited him in his own brief memoir of the discovery of helium, in Nature in 1896? Although he is now remembered for his development, earlier in his career, of a scale for the apparent magnitude, or brightness of astronomical objects, his career in India was not a success. He seems to have suffered from social snobbery due to his middle-class background and lack of a university degree, but he was also a somewhat abrasive personality, as can be seen from the negative comments in his report on the "needless and lavish expenditure" on the various expeditions to view the eclipse, and the even more offensive remarks about the local Indian people in general, which I will not quote in detail here. Another item in the India Office records shows his conflict with the government and the Dutch astronomer Jean Oudemans over longitude measurements that he did not consider particularly important and delayed in analysing. Pogson's report on the eclipse was not published in a peer-reviewed journal, but in a low-profile government publication - Pogson himself complained in a letter in 1882 that it had been treated as "waste paper".

Helium was subsequently shown not just to exist in the Sun, when in 1876 the French astronmer Alfred Cornu observed it in the spectrum of a star in the Cygnus constellation. In the meantime, however, speculation on new elements in the stars had become somewhat wild and uncontrolled, developing a bad name due to multiple announcements of "new elements" that proved too frequent to be credible. (One of the most notorious was "coronium", assigned to a spectral line from sunlight at 5303 angstroms wavelength, which was eventually discovered to come from very highly-ionised iron atoms.)

In 1887, William Hillebrand discovered a mysterious gas while treating uranium ore with acid, that he suspected to be nitrogen. He noticed that its spectrum did not match that known for nitrogen, but did not realise that it was a new element, as at the time it was known that the spectrum of nitrogen could vary considerably with the conditions. In 1895, Baron Rayleigh found that nitrogen extracted from the atmosphere had a different molecular weight to chemically-produced pure nitrogen, and suspected that another element was present. He investigated further, and managed to purify a completely new element, which he named argon. William Ramsey, who was working with Rayleigh on argon, was shown Hillebrand's paper by another colleague who thought Hillebrand's gas might have been argon as well. He repeated Hillebrand's experiment with a different type of uranium ore, and discovered that the gas he produced was much lighter than argon, and had a spectrum that included the D3 line of the mysterious solar element helium. Helium had finally been discovered on Earth.

But scientific research on the Sun continues - this week NASA launched its Parker Solar Probe, to become the first human-created object to enter the Sun's outer atmosphere and observe it.

Sources and further reading:

Janssen, P J, The total solar eclipse of August 1868. Part I, Astronomical Register, 1869, 7(77), pp. 107–110. Shelfmark PP.1556 or 1755.800000
Janssen, P J, The total solar eclipse of August 1868. Part II, Astronomical Register, 1869, 7(78), pp. 131-133 Shelfmark PP.1556 or 1755.800000
Lockyer, J. N. The story of helium, Nature, 1896, 53(1371), pp.319-22. Shelfmark P.P.2011c or (P) BX 80-E(3). Also available online in BL Reading Rooms
Nath, B B. The story of helium and the birth of astrophysics. New York City: Springer, 2013. Available online in British Library Reading Rooms.
Pogson, N R. Report of the Government Astronomer upon the proceedings of the Observatory in connexion with the total eclipse of the Sun on August 18th, 1868, as observed at Masulipatam, Vunpurthy, Madras and other stations in Southern India. Madras: Madras Observatory, 1875. Shelfmark IOR/V/27/430/8.
Pogson, N. R. Letter to Captain Awdry, 10th June 1882, in Grant Duff Collection, Miscellaneous English Correspondence, pp. 96-98. Shelfmark Mss Eur F/234/67
Ramsay, W. Helium, a gaseous constituent of certain minerals, Part I Proceedings of the Royal Society, 1895, 58 pp. 80-89. Shelfmark Ac.3025/21 or (P) JA 00-E(12). Also available free online at https://www.jstor.org/stable/115763
Reddy, V., Snedegar, K.. Balasubramanian, R. K. Scaling the magnitude: the fall and rise of N. R. Pogson, Journal of the British Astronomical Association, 2007, 117(5), pp. 237-245. Shelfmark Ac.4176, (P) OT 00-E(34), or 4713.000000

Posted by Philip Eagle. Thanks to Margaret Makepeace for help in researching India Office records.

07 June 2018

The sixtieth birthday of obstetric ultrasound

Ultrasound image
Ultrasound image by mylissa, CC-BY-SA

Today is the sixtieth anniversary of the publication in The Lancet of the first scholarly article on medical ultrasound by the obstetricians Ian Donald and John MacVicar, and the engineer Tom Brown. While earlier groups had experimented with ultrasound, it was Donald and Brown who achieved real diagnostic success with it, and popularised it in the medical profession. They initially applied it to distinguish uterine cysts from solid tumours such as fibroids, and later developed it for other important tasks, such as diagnosing placenta praevia (a potentially lethal condition during pregnancy in which the placenta attaches too low down in the womb) and directly observing foetuses. It is thanks to their work that ultrasound has become routine in pregnancy and many peoples' first view of their children. 

Donald had become interested in the potential of ultrasound for medicine thanks to his experience with both radar and sonar while serving in the RAF during World War II. Much of his success was because he happened to work for the University of Glasgow, in a city with a large-scale shipbuilding industry which used ultrasonic techniques to test for flaws in metal parts. It was also the home of Kelvin and Hughes, one of the main manufacturers of ultrasonic testing equipment, for which company Brown worked.

There was also a particular perceived need at the time for a safer method of examining foetuses in the womb, as epidemiological studies had discovered that X-ray examinations during pregnancy led to a higher risk of leukaemia and other cancers in the early lives of the children.

Donald subsequently became a celebrity not just for his scientific and medical skills, but as a prominent medical campaigner against abortion. He frequently stated that his observations of foetuses in the womb had confirmed him in his belief that they qualified as human beings from conception, although unlike some religious pro-life campaigners he morally accepted abortion when the foetus was clearly unlikely to survive childbirth or where the child would be very severely disabled. Brown's career effectively ended with the failure of an attempt to start a business producing medical ultrasound equipment, and he felt later in life that much of the media neglected his vital technological contributions to the development of the idea, although Donald always acknowledged them in public.

Further reading:

Brown, T G. Personal recollections. 1999. Available free online at http://www.ob-ultrasound.net/brown-on-ultrasound.html
Craig, M. Craig's Essentials of Sonography and patient care, Baltimore: Saunders, 2018. Available as an ebook in the British Library reading rooms.
Donald, I, MacVicar, J, and Brown, T G. Investigation of abdominal masses by pulsed ultrasound, The Lancet, 1958, 271(7032), pp. 1188-1195. Available at (P) GP 00 - E(14) and also electronically in the British Library reading rooms.
Nicholson, M and Fleming, J E E. Imaging and imagining the foetus. Baltimore: Johns Hopkins University Press, 2014. Available at YK.2014.a.7586.
Norton, M E. Callen's Ultrasonography in obstetrics and gynecology, Elsevier, 2016. Available as an ebook in the British Library reading rooms.

17 May 2018

World Baking Day - two British advances in baking technology

Today on World Baking Day, we'll look at two milestones in how bread-baking became an industry in Britain. Bread

The first is Dr. John Dauglish's invention of the "aerated bread" process. This mechanical process did not use yeast to raise the bread, but added high-pressure carbon dioxide to the water used to make it. Dauglish argued that this reduced production time and the labour required, made the raising of the bread more controllable, and allowed an end to hand-kneading, which he considered unhygienic. It also allowed bread to be made more easily from wholemeal flour, which even then was seen as more nutritious. Dauglish patented his process in a series of patents between 1856 and 1865, GB2293/1856, GB2224/1867, GB677/1864, GB3184/1864, and GB1346/1865.

As well as his bread process, Dauglish's company, the Aerated Bread Co., or ABC, became a major tea shop chain in Britain and its colonies. The ABC shops turn up repeatedly in late-nineteenth and early-twentieth century literature. Sometimes they were criticised as corporate and industrial, rather like Starbucks nowadays (for example in T S Eliot's poem "A Cooking Egg"), but they were also considered important to women's liberation, as they did not serve alcohol and were considered a safe place for "respectable" women to socialise without risking their reputation or being subject to male sexual aggression.

Both the baking and catering businesses of ABC disappeared during the early 1980s. The site of the company's main bakery on Camden Street in North London is now occupied by a large supermarket, of interest as a well-known work by the "high-tech" architect Nicholas Grimshaw.

The second major change in industrial baking was the introduction of the so-called "Chorleywood" process, named after the location of the Flour Milling and Baking Research Association in Hertfordshire. This was based on high-speed mixing and the use of flour improvers such as potassium bromate (now banned for use in food) and Vitamin C. It greatly increased the speed of bread-making and allowed bread to be made from low-protein wheat flour that had previously been considered unsuitable for bread-making. Chorleywood bread is the typical supermarket sandwich loaf, soft and long-lasting with even small bubbles in the crumb.

However, the process has been heavily criticised by some traditional bakers, who blame Chorleywood bread for the increased level of coeliac disease and milder gluten intolerance in Britain in recent years. It has been argued that slower fermentation by more traditional yeast and bacterial cultures reduces the quantity of the specific gluten proteins that cause intolerance, and fermentable carbohydrates that may contribute to other bowel problems, although this remains unproven.

Further reading:
Cauvain, C P and Young, L S, The Chorleywood bread process. Boca Raton: CRC Press, 2006. Available at m06/27984.
Costabile, A, et al., Effect of breadmaking process on in vitro gut microbiota parameters in irritable bowel syndrome, PLoS One. 2014, 9(10), e111225. Available free online at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111225
Edwards, W P (Ed.), The science of bakery products. Cambridge: Royal Society of Chemistry, 2015. Available as a legal deposit e-book in British Library Reading Rooms.
Richardson, B W, On the healthy manufacture of bread: a memoir on the system of Dr. Dauglish. London:Bailliere & Co., 1884
Shaw, G, Curth, L H, and Alexander, A, Creating new spaces of food consumption: the rise of mass catering and the activities of the Aerated Bread Company, in Benson J and Ugolini, L, Ed. Cultures of selling: perspectives on consumption and society since 1700, Aldershot: Ashgate, 2006, pp.81-100. Available at YC. 2006.a.13499
Weichselbaum, E, Does bread cause bloating?, Nutrition Bulletin, 2012, 37, pp.30-36. Available at (P) HP 30-E(2), and online in British Library reading rooms.

Posted by Philip Eagle. Image from "Modern London" by Richard Phillips, 1804.

03 April 2018

Augmented reality - it isn't just for catching mons.

The most recent GREATforImagination post covered an augmented reality app created by Nexus Studios for the US Presidential administration in 2016. Augmented reality is a halfway point towards the more famous virtual reality, in which CGI elements are added to a real-time image of the user's surroundings, using either a mobile device screen or virtual reality goggles. The most well-known applications at the moment are for entertainment, such as the famous game Pokemon Go, or our own use of it in our Harry Potter exhibition.

 

However, there are some more practical uses for augmented reality in the worlds of science and engineering.

The construction industry still largely uses 2-D documents to indicate what should be built. However, why not create augmented reality images of objects in situ for people to copy? Or why not help utilities workers "see" underground pipes before they start digging holes?

An obvious application is in the world of chemistry, where physical 3-D models of large molecules have been familiar for decades, but can take a long time to build. Digital models can be created much more quickly, and AR equipment allows scientists to interact with them with increasing realism. There's a freeware program to try it yourself, if you have some chemistry and computing knowledge.

AR can also be used in surgery, either for training purposes or to allow surgeons to "see" what they are doing during minimally invasive surgery.

(All the articles linked are open access, so you don't have to come to the Library to read them)

13 March 2018

Did Man Get Here by Evolution or by Creation?

In 1967, Jehovah's Witnesses publish a little blue volume asking Did Man Get Here by Evolution or by Creation? Half a century later, a copy shows up in the British Library, in a box of books left as part of the John Maynard Smith Archive.

John Maynard Smith (1920-2004) was a British evolutionary biologist and no supporter of Jehovah's Witnesses in any form. Rather, he had been an atheist ever since discovering the writings of population geneticist J.B.S. Haldane at the age of 15 – and a 'semi-conscious atheist before that'. Going into Eton's school library, he found Haldane's essay collection Possible Worlds and its 'mixture of extreme rational science, blasphemy and imagination, was a way of thinking that I had never encountered before'. It inspired Maynard Smith to read up on evolution and eventually – after a detour into aircraft engineering – to study it with Haldane and turn it into a successful career. So how did he come to own such a curious little book?

We have to go back to 1967 again. In October of that year, a Mrs Daphne Taylor of Sheffield packs up the book and posts it to Sussex University. 'Dear Professor,' she writes, 'Please find enclosed a small gift which I hope you will accept and enjoy reading.' Why send it to Maynard Smith? Has she sent it to any other evolutionary biologists? We don't know, but her motivation becomes quite clear as she goes on to say that she knows several people 'including teachers interested in evolution' who 'have found it most enlightening.' She wonders if Maynard Smith would let her know his views 'on any of the points brought out in the book'? There is, unfortunately, no record of any reply.

But is it telling that he kept both the book and, folded inside it, the accompanying letter? We do know that Maynard Smith had a continued interest in religion and creation(ism). The archives contain a short manuscript from his later years on "The Evolution of Religion" (co-authored with David Harper); in the 1960s he discussed science and religion on the radio and in 1986, following an invitation by the Oxford Union, debated the motion "That the Doctrine of Creation is more valid than the Theory of Evolution" (198 noes, 115 [or 150; the recording is unclear] ayes).

01-MS-Image-1
Proof for an intelligent designer? From "Did Man Get Here By Evolution Or By Creation?", p.71. Copyright © Watch Tower Bible & Tract Society of Pennsylvania.

 

What do the Jehovah's Witnesses ask and affirm in their volume? Evolutionary teaching saturates everything, even religion. But 'what do you personally know of the evidence for or against the belief in evolution? Does it really harmonize with the facts of science? We invite your careful examination of this matter, as it has a direct bearing on your life and your future.' The running argument is one that had been first used by William Paley in his 1802 book Natural Theology: or, Evidences of the Existence and Attributes of the Deity – nature is too complex for there not to have been an intelligent designer or creator. Paley famously used the analogy of a watchmaker: suppose you were to find a watch on the heath, and upon examining it and its complexity, would you not suppose there has to have been a watchmaker? Similarly, the Jehovah's Witnesses argue that 'what is made requires a maker'. Liking DNA to 'complex blueprints for future development', they wonder: 'And when we see blueprints responsible for the building of beautiful bridges, buildings and machines, do we ever contend they came into being without an intelligent designer?' What is more, there is not enough evidence for evolution (while all the existing evidence is compatible with the Bible), it's all just a theory based on conjecture and wishful thinking, unsupported by fact, and, really, not proper science at all.

The conclusion? The truly 'honest seekers after truth must acknowledge that the evidence is overwhelming that man got here, not as a result of evolution, but by means of creation by God.'

The question of evolution or creation is of course not new – Paley's watchmaker analogy may be familiar, but more will have heard (of) the story of the 1860 debate between Thomas Huxley ("Darwin's bulldog") and Bishop Samuel Wilberforce: are you descended from monkeys on your grandmother's or your grandfather's side? (The story itself has been highly sensationalised: contemporary accounts suggest that it was much less dramatic.) But organised creationism, in the sense in which it is most commonly understood today, is very much shaped by American Evangelical Christians and emerged in the 20th century. Stephen Jay Gould referred to it as a 'local, indigenous, American bizarrity' – but it has in fact not been confined to America. In Britain, especially recently, creationism has been discussed mostly in the context of education (free schools). Maynard Smith, while obviously not involved in those recent debates, discussed whether there is a conflict between science and religion in a serious of radio broadcasts aimed at school audiences in 1964. He concluded that there are cases and ways in which they do contradict each other but agreed with Christians in so far as to say that there seems to be something remarkable – but not necessarily unique! – about human intelligence in comparison to animals. He debated creationists, once together with Richard Dawkins – famously or infamously, one of the most outspoken critics of creationism and religion. Dawkins remembers that in the 1986 debate, Maynard Smith 'was, of course, easily able to destroy the creationist's case, and in his good-natured way he soon had the audience roaring with appreciative laughter at its expense.' Interviewed by the British Humanist Association – who are actively lobbying against creationist influences – in 2001, Maynard Smith finally summarised his views on religion as follows:

'I think there are two views you can have about religion. You can be tolerant of it and say, I don't believe in this but I don’t mind if other people do, or you can say, I not only don't believe in it but I think it is dangerous and damaging for other people to believe in it and they should be persuaded that they are mistaken. I fluctuate between the two. I am tolerant because religious institutions facilitate some very important work that would not get done otherwise, but then I look around and see what an incredible amount of damage religion is doing.'

So how did man get here? Obviously, Maynard Smith's answer would have been very resounding, "by evolution"!

02-JMS-1965
John Maynard Smith c. 1965. Copyright © University of Sussex.

 

Posted by Helen Piel. Helen Piel is a PhD student at the University of Leeds and the British Library. She is part of the AHRC's Collaborative Doctoral Partnership scheme and working on the John Maynard Smith Archive, exploring the working life of a British evolutionary biologist in the post-war period.

This post forms part of a series on our Science and Untold Lives blogs highlighting some of the British Library’s science collections as part of British Science Week 2018.

Further reading:

The book and letter are now catalogued and can be found in the John Maynard Smith Archive (Add MS 86839 C)

Krasnodebski, M. (2014). Constructing creationists: French and British narratives and policies in the wake of the resurgence of anti-evolution movements. Studies in History and Philosophy of Biological and Biomedical Sciences 47, 35-44.

Numbers, R. (2013). Creationism. In M. Ruse (ed.). The Cambridge Encyclopedia of Darwin and Evolutionary Thought. Cambridge [etc.]: Cambridge University Press.

Pallen, M. (2009). The Rough Guide to Evolution. London: Rough Guides Ltd.

Watch Tower Bible & Tract Society of Pennsylvania (1967). Did Man Get Here by Evolution or by Creation? Watch Tower Bible & Tract Society of New York, Inc. & International Bible Students Association Brooklyn: New York.

 

19 December 2017

James Greathead and the tunnelling shield

Shield instagram
This GREATforImagination post commemorates the development of the tube tunnelling shield by the South African engineer James Henry Greathead. The patent, GB 1738/1874, is not online but you can see it if you visit the Library with a Reader Pass. Tunnelling shields allowed deep tunnels to be driven through soft earth, instead of being dug as trenches and then covered up. The shield protects workers cutting the earth at the tunnelling face. It slowly moves forward, with the tunnel being lined behind them to ensure that it doesn't collapse. They are the forerunners of the modern giant tunnelling machines used to dig the Channel Tunnel and the soon-to-open Elizabeth Line.

The first shield was invented by the British-based French engineer Marc Brunel, father of the more famous Isambard Kingdom Brunel, and patented as GB 4204/1818. In 1825-41, father and son used it to construct the Thames Tunnel from Wapping to Rotherhithe. First opened as a pedestrian tunnel, it is now part of the London Overground route from Highbury to New Cross.

Greathead's teacher, the engineer Peter Barlow, patented an improved shield in 1864 as GB 2207/1864. Barlow's key innovations were making the shield circular, increasing its strength, and lining the tunnel behind the shield with iron rings instead of Brunel's brickwork, which was stronger and faster. Although this version of the shield was patented in Barlow's name alone, Greathead is thought to have played an important role in the design. Greathead's patent of 1874 further improved the shield by using water or air to force debris back from the shield face into the tunnel, using hydraulic rams to force the shield forwards, and introducing the use of compressed air to further reduce the risk of collapse in very soft soil.

Greathead shield patent
Image from Greathead's patent GB 1738/1874

 

 

Greathead planned the construction using his shields of the first three deep-level tube lines in London - the City and South London Railway from Bank to Stockwell (now part of the Northern Line), the Waterloo and City Railway from Bank to Waterloo (now the Waterloo and City Line), and the Central London Railway from Bank to Shepherd's Bush (now part of the Central Line). However, his first main project in London was a now forgotten one - the Tower Subway beneath the Thames from Tower Hill to Tooley Street, which was originally opened in 1870 as a cable railway tunnel, but only lasted as such for less than six months before the operating company went bankrupt. It remained as a foot tunnel until 1898, when it was closed thanks to the opening of Tower Bridge. Since then it has carried water mains and, recently, telecommunications cables. At only six feet in diameter, it was not particularly popular as a foot tunnel.

Greathead died in 1896, before the Waterloo and City or Central London opened. Original Greathead shield parts can be seen in two places in London. One of the shields used to construct the Waterloo and City Railway was abandoned underground when the line was completed, and discovered during reconstruction of Bank station for the Docklands Light Railway in the 1990s. The outer ring was left in place and can be seen, painted red, at Bank in the deep-level passageway between the Waterloo and City Line platforms and the other tube lines and DLR. The outer rings of the shields used to construct the Rotherhithe road tunnel under the Thames were erected as archways before both entrances to the tunnels, from the Highway in Limehouse and Brunel Road in Southwark. A statue of Greathead stands in King William Street in London, near Bank where those three first tube lines all started from. The statue is not just for decoration - the plinth hides a ventilation shaft for the tube station.

Greathead statue
Greathead statue in King William Street

 

 

Further reading:
Croome, Desmond F and Jackson, Alan A. Rails through the clay. Harrow Weald: Capital Transport, 1993. Shelfmark YK.1994.b.4557
Maidl, Bernhard, and others. Mechanised shield tunnelling. Berlin: Wilhelm Ernst & Sohn, 2012. Shelfmark (B) 624.193
Stack, Barbara. Handbook of mining and tunnelling machinery. Chichester: Wiley, 1982. Shelfmark 82/04476
West, Graham. Innovation and the rise of the tunnelling industry. Cambridge: Cambridge University Press, 2005. Shelfmark m05/35230

Greathead statue photo by Dr. Jacqueline Banerjee, first published at Victorian Web.